Effects of the Incorporation of Nano-Bamboo Charcoal on the Mechanical Properties and Thermal Behavior of Bamboo-Plastic Composites

نویسندگان

  • Shiliu Zhu
  • Yong Guo
  • Yuxia Chen
  • Na Su
  • Kaiting Zhang
  • Shengquan Liu
چکیده

To illustrate the effects of nano-bamboo charcoal (NBC) on the properties of bamboo plastic composites (BPC), nano-bamboo charcoalbamboo plastic composites (NBC-BPC) were prepared at 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% (w/v) NBC and characterized. The effects of NBC on the water absorption, fractured surfaces, mechanical properties, and thermal properties of the composites were investigated. NBC had strong interfacial interaction in the BPC, which greatly improved the interfacial adhesion of bamboo flour (BF) and high-density polyethylene (HDPE). The water resistance, flexural strengths, and tensile strengths of the composites were enhanced compared with traditional BPC when the volume of NBC reached a specific loading. These results demonstrated that the incorporation of NBC slightly improved the thermal properties of the synthesized composites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Wood-Plastic Composites Made with Different Lignocellulosic Materials that Vary in Their Morphology, Chemical Composition and Thermal Stability

In this study, four kinds of lignocellulosic fibers (LFs), namely, those from Chinese fir (Cunninghamia lanceolata), Taiwan red pine (Pinus taiwanensis), India-charcoal trema (Trema orientalis) and makino bamboo (Phyllostachys makinoi), were selected as reinforcements and incorporated into high-density polyethylene (HDPE) to manufacture wood-plastic composites (WPCs) by a flat platen pressing p...

متن کامل

Effects of Fungicides on Mold Resistance and Mechanical Properties of Wood and Bamboo Flour/High- Density Polyethylene Composites

The main objective of this study was to determine the mold resistance and mechanical properties of fungicide-treated wood and bamboo flour/high density polyethylene (HDPE) composites. Zinc borate (ZB), 4,5-dichloro2-octyl-isothiazolone (DCOIT), zinc pyrithione (ZPT), and carbendazim (MBC) were used as fungicides. Then, treated and untreated samples were exposed to mold fungi (Aspergillus niger,...

متن کامل

Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites

The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE) composites reinforced by bamboo pulp fibers (BPF). Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF) as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mech...

متن کامل

PET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

Tensile and Flexural Analysis of a Hybrid Bamboo/Jute Fiber-reinforced Composite with Polyester Matrix as a Sustainable Green Material for Wind Turbine Blades

Recently, there has been a fast growth in research and investigation in the natural fibre composite due to the advantages of these materials, such us low environmental impact, low cost and good mechanical properties compared to synthetic fibre composites. Much effort has gone into increasing the mechanical performance and applications of natural fibes. This paper examines the mechanical propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016